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A B S T R A C T

In this contribution, ternary telluride ABTe2 compounds are proposed as promising candidates for n-type semi-
conductor materials in photovoltaic and photochemical devices. We report the successful calculations of the most
fundamental properties needed in the previous applications such as the effective mass, dielectric constant and the
exciton binding energy. This latter one has been evaluated from the density functional theory (DFT) method in the
first time for these materials. An easy dissociation for hole-electron pair is suggested due to the small value of
exciton binding energy at room temperature (i.e., lower than the thermal energy, 25meV) for most of the studied
compounds. The band structure and density of states of ABTe2 are calculated using the hybridHSE06 functional,
PBE0 and in addition the pure GGA-PBE functionals. Additionally, to elucidate the optical properties of these
compounds, the complex dielectric function and optical reflectivity were computed for a wide range of photon
radiation. Therefore, ABTe2 materials are expected to be promising candidates for visible light driven photo-
voltaic and photocatalytic devices.
1. Introduction

Since the most abundant renewable energy resource is the solar en-
ergy, the study of photovoltaic and photochemical devices is the subject
of many recent researches [1]. Light absorption, exciton dissociation and
diffusion of charge carriers are the most important steps to convert the
energy of light into other forms of energy such as electricity or chemical
reaction [2]. The material must be able to absorb the light. In the case of
photovoltaic or photochemical applications, the optimum band gap amid
1.4 and 3 eV (i.e. in the visible spectrum) is required [3–6]. The nature of
the energy band gap (i.e. direct or indirect) has an evident effect on the
type and nature of electronic transition [7,8]. The flat curve of the
maximum bands (BV and BC) has also an important role in the case of
sunlight absorption and for photovoltaic application since it modifies the
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absorption amount of the material [9].
The pair electron-hole (so-called exciton), that created during light

absorption step, must be separated to giving free charge carriers that are
used in the working of the device. This process is called “exciton disso-
ciation”. The binding energy of the exciton noted Eb is the electron-hole
energy which must be as low as possible to facilitate the dissociation.
Thermal energy is able to dissociate the exciton means that the Eb should
be less than KBT. The electrostatic force being proportional to the inverse
of the static dielectric constant, a small value of the binding energy is
provided with a large static dielectric constant. In Refs. [10–15], we can
be noticed that the Eb values smaller than 25meV that obtained for
materials used in photovoltaic devices with a dielectric (εr) value larger
than 10. For ionic systems the static, dielectric constant, including
vibrational contribution in addition to the electronic one, is used in the
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Fig. 1. Crystal structure of ABTe2 compounds (a: rhombohedral with R3m; b:
trigonal with P-3m1; c: hexagonal structure with P63/mmc space group).
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estimation of the binding energy assuming that the time scale of the
exciton dissociation is larger than the period of the harmonic modes [2].

Diffusion of charge carriers distinguishes by free charge carriers and
move separately, which have been used in PV system electrodes or
photochemical sites in a photocatalytic device. The mobility of the
charge carriers and their related effective masses (m*) are important
parameters in the applications of light energy conversion, in which high
mobility means low effectivemass. Generally, the largest effectivemasses
found in photovoltaic devices are less than 0.5 mo allowing a good
mobility [14,16–18].

In this work, an ab initio study on ternary ABTe2 compounds (where
A is Li, Na, K, Rb, Cs; and B is Sc, Y or La) is used in order to determine
the following fundamental parameters such as: Eg , m�, εr and Eb. The
ABTe2 compounds have rhombohedral (space group number 166),
trigonal (space group number 164) and hexagonal (space group number
194) type-structures [19–21]. The RbYTe2, KYTe2 and KLaTe2 com-
pounds are synthesized by M. Babo et al. [20] and by K. St€owe [19]
respectively. On the other hand, the compounds LiYTe2, NaYTe2,
RbLaTe2, CsScTe2 and CsYTe2 are studied theoretically by J. Shi et al.
[21]. The ABTe2 structure depends on the ionic radius of rare earth Rþ3

and the fractional coordinate [19,21]. Homologous compounds of our
studied materials i.e. ABS2 have being intensively searched on their
scintillation and luminescence properties, due to their potential appli-
cations for X-ray and white light-emitting diodes luminophores
[22–27]. Most of these materials are wide band gap semiconductors
>3 eV [22], and are not interesting in photovoltaic applications. From a
chemical point of view, the electronegativity plays an important role in
the band gap width: the electronegativity of the chalcogen atoms
decreasing from S to Te (S¼ 2.58, Se¼ 2.55, Te¼ 2.10) leads to the
decrease of the band gap of ABX2 from X¼ S to Te [28–31]. That is why
we predict a suitable gap for photovoltaic or photochemical applica-
tions with X¼ Te. Except the crystal structure and some electronic
properties, most of the essential physical properties for ABTe2 series are
unknown. With this motivation, the theoretical detailed study of the
structural, electronic and optical properties of the investigated ABTe2
ternary telluride has been executed employing the first principles
calculations.

2. Computational details

This work has been carried out using first-principal calculations under
DFT field [32] as implemented in CRYSTAL code [33]. Three different
Hamiltonians from GGA-PBE [34], PBE0 [35] and HSE06 [36,37] have
been used to treat the exchange-correlation interactions. For all studied
compounds here, the basis sets used in the present work are: the 61-1G
(Dovesi et al. 1984) basis set [38] for Li, 8-511G (Dovesi et al. 1991)
basis set [39] for Na, the HAYWSC-31 pseudo-potentials [40] for K, Rb
and Cs, while Sc, Y, La, and Te are described by HAYWSC-311d31
(Bredow 2006) [41], ECP HAYWSC [40], 9761111sp-631d [40] and
m-pVDZ-PP (Heyd et al. 2005) [42] basis sets, respectively. It is impor-
tant to notice that the basis sets of Sc, Y, La and Te atoms have been
modified in the present study. Reciprocal space is sampled using
shrinking factor equal to 10, corresponding to 116 k-points in the irre-
ducible Brillouin zone (IBZ) using Monkhorst-Pack k-points mesh [43]
for all compounds.

For more precision, the threshold on the root-mean-square gradient
and displacement was set to 10�4 a.u. The convergence criterion for the
SCF cycle was fixed at 10�8 Hartree per unit cell during geometry opti-
mization and dielectric constant calculations. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [44] which provides a fast way to
find the minimum energy is used to determine the structural a- and
c-parameters and the inter-atomic distances.

Frequency-dependent CPHF calculations of the dynamic dielectric
properties in the range of photon energy have also been performed. In the
coupled-perturbed (CP) method, orbitals relaxation was taken into ac-
count in the presence of the external field (see details in Ref. [45]).
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3. Results and discussions

3.1. Structural properties

The studied ABTe2 (where A is Li, Na, K, Rb, Cs; and B is Sc, Y or La)
materials crystallized in three type structures: trigonal, rhombohedral
and hexagonal. Firstly, the LiYTe2 compound crystallizes in the trigonal-I
type structure with the P-3m1 space group and with two formula units
per unit-cell (Z¼ 2). NaYTe2, KYTe2, KLaTe2, RbLaTe2, CsScTe2 and
CsYTe2 compounds crystallize in the R3m trigonal-II type structure and
three formula units per unit-cell (Z¼ 3), while RbYTe2 compound crys-
tallizes in the P63/mmc hexagonal-type structure and two formula units
per unit-cell (Z¼ 2). The trigonal-type structure can be described as a
distorted pseudo-cubic along the [111] direction packed of Telluride
atoms with the stacking ABCA sequence and with the ABBA sequence for
the hexagonal-type structure (i.e. in RbYTe2). Both cations (Aþ1 and Bþ3)
are situated in alternating layers with octahedral and trigonal prismatic
interstices according to the trigonal and hexagonal structures. Pro-
jections of the ABTe2 structures (trigonal and hexagonal) are presented in
Fig. 1. The good reproduction of the cell parameters is essential for the
semiconductor study, since a bad agreement between theory and
experiment will induce a poor description of electronic properties. The
structural parameters: a, c, and bond-length, are collected in Table 1 for
comparison with the other available results in the literature. We can
observe that there is a fairly good agreement between DFT and experi-
ment (Refs. [19–21]).

From the functionals point of view, the best results are found at the
PBE0 level with a relative error of 2 and 9% on a- and c-parameters
compared to the experimental and other theoretical values, (see Table 1).
We can see that the lattice parameters increase from LiYTe2 to CsYTe2
with the alkaline radius size (see Fig. 1). This trend is also noticed for
bond-lengths. Similar results were also found in different previous
studies for cell-parameters: a(NaLaSe2)¼ 4.34 Å, a(KLaSe2)¼ 4.40 Å, a(Rba-
LaSe2)¼ 4.43 Å; c(NaLaSe2)¼ 20.79 Å, c(KaLaSe2)¼ 22.78 Å, c(Rba-
LaSe2)¼ 23.71 Å in Refs. [46–48], and for bond-length, dK-Te¼ 3.24<
dRb-Te¼ 3.64 Å in Ref. [20].
3.2. Band gap

As mentioned in the introduction, semiconductors must have an op-
timum band gap larger than 1.4 and less than 3.0 eV to be possible
candidates for photovoltaïc and photochemistry [49,50]. On the other
hand, the amplitude of the dipole moment interband transitions from
iðkÞ → jðk’Þ defining their band gap or visible absorption energy de-
termines the intensity of the light energy conversion processes.



Table 1
The calculated structural parameters and bond length of ABTe2: lattice parameters (a, c, d, in Å).

Parameters LiYTe2 NaYTe2 KYTe2 KLaTe2 RbYTe2 RbLaTe2 CsScTe2 CsYTe2

PBE a 4.25 4.40 4.49 4.47 4.53 4.79 4.43 4.59
c 7.15 22.63 24.74 24.90 17.22 26.08 26.89 27.11
d(A-Te) 3.00 3.24 3.40 3.71 3.67 3.76 3.84 3.85
d(B–Te) 3.07 3.08 3.22 3.25 3.12 3.29 3.02 3.15

PBE0 a 4.24 4.39 4.47 4.73 4.51 4.77 4.40 4.56
c 7.12 22.50 24.67 24.81 17.19 25.97 26.86 27.07
d(A-Te) 2.99 3.23 3.53 3.58 3.68 3.74 3.86 3.87
d(B–Te) 3.06 3.08 3.09 3.27 3.10 3.28 2.98 3.12

HSE06 a 4.25 4.39 4.48 4.73 4.51 4.78 4.40 4.57
c 7.14 22.55 24.68 24.83 17.19 25.99 26.86 27.08
d(A-Te) 3.00 3.23 3.53 3.59 3.68 3.75 3.86 3.88
d(B–Te) 3.06 3.08 3.09 3.27 3.10 3.28 2.98 3.12

Others a 4.30a 4.43a 4.39b 4.66c 4.43b 4.74a 4.37a 4.55a

c 7.15a 22.70a 22.55b 24.41c 17.29b 25.60a 26.50a 26.74a

d(A-Te) 3.03a 3.26a 3.24b 3.53c 3.64b 3.71a 3.78a 3.81a

d(B–Te) 3.09a 3.10a 3.07b 3.23c 3.08b 3.25a 2.98a 3.12a

a Ref. [19].
b Ref. [18].
c Ref. [17].

Fig. 2. The calculated band structure spectra along the high-symmetry lines for LiYTe2, KYTe2 and RbYTe2 by PBE0. The Fermi level is set to zero energy.
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Calculations of the electronic energy band structure have been performed
by PBE, PBE0 and HSE06 functionals on a discrete grid of points along
lines connecting high symmetry k-points in Brillouin zone (BZ). Because
we have three different phases, we show in Fig. 2 the LiYTe2, KYTe2 and
RbYTe2 band diagrams as representative for the trigonal-I, –II and hex-
agonal phases, respectively. The Fermi energy level is located at the
maximum band valence. As well be seen in Fig. 2, the highest occupied
valence band is located in Г and the lowest unoccupied one in the con-
duction band is located in L andM points for LiYTe2, KYTe2 and RbYTe2,
respectively, which indicates that these materials are characterized by an
indirect band gap. Even more interesting is that the band gap is direct for
the entire material system. This is in contrast to the understudy ABTe2
materials whose band gap is indirect for high band gap alloys. The
calculated direct and indirect band gap values for the investigated
Table 2
The calculated energy band gap of ABTe2 (in eV), direct values in parentheses.

LiYTe2 NaYTe2 KYTe2 KLaTe2

PBE 1.20(2.14) 1.13(2.07) 1.36(2.13) 1.51(2.35)
PBE0 2.51(3.58) 2.38(3.51) 2.68(3.61) 2.80(3.78)
HSE06 1.88(2.94) 1.78(2.87) 2.58(2.95) 2.18(3.12)
Others 1.56(2.48)a – – –

a Ref. [19].
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structures at the level of different exchange-correlation tabulated in
Table 2, which also contains results of the previous calculations. It is well
known that pure DFT Hamiltonian as LDA and PBE underestimates band
gap values with respect to experimental ones, while Hartree-Fock (HF)
provides too large values. The present results of band gap with the hybrid
HSE06, PBE0 Hamiltonians show an enlarging by comparison with
PBE-GGA for all compounds. HSE06 showed a good agreement with
available theoretical results and less about 0.7 eV compared to those
calculated by PBE0. As a consequently, we predict a shifting of optical
spectra to high energy (i.e. about 0.7 eV/200 nm to UV) for PBE0. We
observe from Table 2 that the increasing of alkali ionic radii from Li to Cs
increases the band gap width (1.88 for LiYTe2 to 2.28 eV for CsYTe2).
This suggests that the absorption quantity to sunlight for the LiYTe2 and
NaYTe2 materials will be higher than the other compounds (see in
RbYTe2 RbLaTe2 CsScTe2 CsYTe2

1.47(2.18) 1.61(2.36) 1.19(1.51) 1.58(2.19)
2.78(3.66) 2.92(3.80) 2.59(3.05) 2.28(3.02)
2.16(3.01) 2.29(3.14) 2.13(2.97) 2.28(3.02)
2.30(2.87)a 1.64(2.20)a 2.03(2.76)a 1.56(2.48)a



Fig. 3. The calculated DOS diagrams for LiYTe2, KYTe2 and RbYTe2 by PBE0. The Fermi level is set to zero energy.
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spectrum of Imagine part of Epsilon). Moreover, the maximum E(k)
dispersion is observed in the Г-Г direction near the Fermi region,
whereas there is a quasi-flat band in the Г-Z (or Г-L) direction. As a direct
result, we expect lesser effective masses for the charge carriers and high
mobility, enhancing charge-carrier kinetic for these materials. To further
explain and elaborate the nature of the electronic states of the energy
bands, we have calculated the total partial densities of states (DOS) di-
agrams. Fig. 3 reports DOS of LiYTe2, KYTe2 and RbYTe2. It can be seen
that the valence band (VB) is formed by two regions: V1 and V2 (see
Fig. 3), the first region (V1) around�15 and�11 eVmainly p-A, s-Te and
a little p-B states contribution are located. Interestingly, p-A states shift to
slightly lower energy values going from 15 and -12 eV. The second region
(V2) around �3.7 eV is dominated by p-Te states hybridized with a small
contribution of d-B states. In the conduction band (CB), d-B states as well
as s and p states are the main components with a minor contribution from
p-Telluride states. Then, the optical gap is mainly determined by themain
transition between Te�2 valence bands to Bþ3 conduction bands. Material
with a band gap between 1.4 and 3 eV, can be used in visible light energy
conversion [3,50,51]. Thus, all considered materials have a gap less than
3 eV (see Table 2), which means that they can be used in visible light
energy applications.
Table 3
The computed effective masses (m*) (in electron mass), dielectric constants (εr) and

Parameters LiYTe2 NaYTe2 KYTe2

PBE me
* 0.94 0.31 0.42

mh
* 0.53 0.75 0.68

εvib 10.73 9.89 8.08
ε∞ 8.33 7.85 6.91
ε0ðεrÞ 19.06 17.47 14.99
Eb 12.68 9.77 15.71

PBE0 me
* 0.86 0.27 0.37

mh
* 0.62 0.73 0.62

εvib 7.85 7.07 5.98
ε∞ 6.73 6.47 5.86
ε0ðεrÞ 14.58 13.53 11.84
Eb 23.07 14.64 22.48

HSE06 me
* 0.89 0.29 0.38

mh
* 0.55 0.76 0.79

Others mh
* 0.61a 0.84a –

a Ref. [19].
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In the next step, we will discuss the most fundamental properties
(effective mass m*, dielectric constant εr, and exciton binding energy Eb
required from a semiconductor to make it useable in photovoltaic and
photochemical devices.

3.3. Effective mass

The effective mass can be found by fitting the E-k diagram around the
conduction band minimum (CBM) for the electrons or the valence band
maximum (for the holes) by a parabola, which takes into account the
electrons behavior almost like free electrons in the extremity bands (i.e.
BV and BC extremum). Thus, the effective mass is then obtained from,

1
m* ¼

1
ћ2

∂2EðKÞ
∂2K

: (1)

Electrons with energy close to the valence band maximum behave
almost like free electrons. Thus, their effective mass plays a role in the
potentially high mobility of charge carriers and also in the binding en-
ergy of the exciton (see below). The computed effective masses of the
investigated materials are reported in Table 3 in which the effective
electron mass is point out by under script ‘‘e’’ (m*

e) and the hole mass by
binding energy (Eb) (in meV).

KLaTe2 RbYTe2 RbLaTe2 CsScTe2 CsYTe2

0.34 0.29 0.36 1.23 0.62
0.71 0.32 0.73 0.85 0.78
9.90 7.90 9.92 9.13 7.78
6.50 6.31 6.09 7.38 5.96
16.40 14.21 16.01 16.51 13.74
12.20 10.25 12.79 25.08 24.88

0.27 0.23 0.33 0.95 0.56
0.60 0.31 0.77 0.84 0.79
7.00 5.33 7.19 6.08 5.02
5.38 5.29 5.16 5.82 5.04
12.38 10.62 12.35 11.90 10.06
16.52 15.92 20.60 42.81 44.03

0.28 0.25 0.33 0.96 0.58
0.68 0.31 0.80 0.73 0.90

– – 1.10a 0.77a 0.80a
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‘‘h’’ (m*
h). Generally, the different functionals give almost similar results.

Here, the discussion will focus only on the effective mass calculation for
these materials. Shi et al. [21] have been reported hole effective masses
for LiYTe2 (0.61mo), NaYTe2 (0.84mo), RbLaTe2 (1.10mo), CsScTe2
(0.77mo) and CsYTe2 (0.80mo) calculated by HSE06. They are close to
ours, (0.55mo, 0.76mo, 0.80mo, 0.73mo and 0.90mo for LiYTe2, NaYTe2,
RbLaTe2, CsScTe2 and CsYTe2, respectively) showing the accuracy of our
calculation. In other side, the electron effective masses are smaller
compared than hole masses for all studied compounds, except LiYTe2 and
CsScTe2, which leads us to classify these semiconductors as n-type
semiconductors materials. We noticed from literature that the effective
mass for famous materials used in convert light energy devices have
values less than 0.5mo and therefore, leading to a high mobility of
charges [2]. This is the case for all the studied compounds except
CsScTe2. However, for CsScTe2, its effective masses around the unity
suggesting its mobility of carriers smaller compared to other compounds.

3.4. Dielectric constants

The polarization response of a dielectric material to the external
incident electric field or radiation is presented by εr. Its static constant
(ε0) constitutes by two contributions in which the electronic part (noted
ε∞) presents the polarizability of the electron density and the vibrational
one (noted εvib) reflects ions displacement in the crystal lattice. Hence, we
have,

ε0 ¼ ε∞ þ εvib (2)

The electronic contribution to the static dielectric tensor is calculated
from an iterative coupled-perturbed Hartree-Fock/Kohn-Sham (CPHF/
KS) process [52], with a threshold of 10�4 bohr3 on the unit cell polar-
izability, while the vibrational contribution part is computed from the
harmonic phonon spectrum using the equation,

εvib ¼ 4π
V

X

p

z2p
ϑ2
p

(3)

where V is the volume of the unit cell, ϑp and Zp are the phonon fre-
quency of the mode p and the Born effective charge respectively.

Moreover, the electronic dielectric ε∞ part and the vibrational one εvib
present the two contributions to the dielectric constant ε0 in material.
Table 3 shows results obtained from the coupled-perturbed PBE and
PBE0 calculations. We notice that most values calculated by PBE0 are
between 10 and 14, and the highest values are obtained for LiYTe2
(14.58), NaYTe2(13.53) and KLaTe2 (12.38) compounds, make these
materials have a smallest electron-hole electrostatic forces, and by
consequence a smallest exciton energies binding. CsYTe2 has a lower
static dielectric value (10.06) which compromises its efficiency even if
the band gap is in the favorable range as discussed above, and suggests
that this compound has a largest exciton energy binding (discussed
below). Both the obtained electronic and vibrational contributions to the
static dielectric constant are larger with PBE than with PBE0 due to the
too small gap value and too soft phonons.

3.5. Exciton binding energy

The exciton binding energy (Eb) can be evaluated using the Wannier
excitonmodel [53] in which the exciton treats as a hydrogen atom. In this
model, the calculation of Eb involves only the knowledge of the dielectric
constant of the semiconductor and the effective masses of the charge
carriers and it can be computed as follow,

Eb ¼ EH
μ
ε2r

(4)

where EH is the energy of the 1s orbital of hydrogen (�13.6 eV), εr is the
dielectric constant and μ is the reduced mass of exciton,
5

1
μ
¼ 1
m�

e

þ 1
m�

h

(5)
The binding energy must be smaller than the thermal energy
(25meV), to achieve an efficient dissociation of the exciton at room
temperature, Because the time scale of the exciton dissociation in opto-
electronic devices is higher than the atomic motions, it is assumed that
the resulted charges (i.e. electrons and holes obtained from exciton
dissociation) are governed by the relaxed exciton, then the relative
dielectric constant in the binding energy expression (eq. (4)) is given by
the static dielectric ε0 constant (i.e. εr¼ ε0) [2]. The obtained relaxed
exciton binding energies are computed using εr values presented in
Table 3. The exciton binding energies calculated by PBE are smaller than
the PBE0 ones due to the overestimation of εr given by PBE as said pre-
viously. We can see from the literature, that there is a relation between
the exact HF-exchange and 1

ε∞
(the inverse of the electronic dielectric

constant), in which the band gap is well reproduced. For this, we observe
that the PBE0 (with 25% of HF exchange) is more reliable approximation
for compounds having ε∞ around 4 [54,55]. The exciton binding energy
is larger than 25meV for CsScTe2 (42.81) and CsYTe2 (44.03), which
means that their exciton (electron-hole force) is strongly bounded and
cannot be dissociated at room temperature. The smallest effective mass is
obtained for NaYTe2 (14.64), RbYTe2 (15.92) and KLaTe2 (16.52), see
Table 3, so the easier diffusion of charge carrier is attributed to them.
Moreover, their exciton binding energy is lower than the thermal energy
(25 meV) compared to other CsScTe2 and CsYTe2.

Therefore, the efficiencies of NaYTe2, RbYTe2 and KLaTe2 in light
energy conversion will be wider. In the best of our knowledge, this is the
first study was performed to determine these parameters in considered
ABTe2 compounds, and we welcome experiments to prove them.

3.6. Optical properties

The optical properties of a compound are very important to under-
stand the nature of materials and also give a clear picture of their ap-
plications in photovoltaic or photochemical devices. Therefore, their
dynamic optical properties like frequency dependent dielectric functions
εðωÞ and reflectivity RðωÞ are investigated in details in the 0–20 eV range
of radiation energy by PBE0 functional with CP method for their possible
applications in optoelectronics. The successfully calculated imaginary
ε2ðωÞ and real ε1ðωÞ parts as functions of an electromagnetic wave-
frequency allow us to calculate all other important linear optical char-
acteristics.

As well known, the real part of dielectric function describes polari-
zation and the imaginary one treats absorption. The latter one (imaginary
part) is derived by the optical transitions between occupied and unoc-
cupied bands [56]. In CRYSTAL, both parts of dielectric function are
calculated in the same time at the self-consistent coupled-perturbed level
of calculation. Fig. 4 shows the calculated CP-PBE0 results for the real
part of the complex dielectric function, ε1ðωÞ. It is clear from the plots
that the optical dielectric constant before resonances ε1ðω¼ 0Þ increases
with the decrease of the band gap energy for both directions of polari-
zation, explaining why CsScTe2 and CsYTe2 have the smallest dielectric
constant. Moreover, the plots reveal that the variation of the optical
dielectric constant values for (001) direction is less remarkable than the
component of (100) one. This mean that the understudy ABTe2 materials
have two dominant independent components of the dielectric tensor. The
corresponding dielectric functions are εXðωÞ and εZðωÞ corresponding to
the applied electric field (light polarization) parallel and perpendicular to
the crystallographic c-axis. At certain energy limit over resonances, ε1ðωÞ
drops below unity and the compounds show a metallic behavior.

Fig. 5 displays the energy position and relative amplitudes of specific
absorption from the imaginary ε2ðωÞ part of the dielectric response of
ABTe2 calculated by the CP-PBE0 method. The interband electronic
transitions of the dielectric function can be split into direct and indirect
transitions. We pay no attention to the indirect interband electronic



Fig. 4. The real part ε1ðωÞ of the dielectric function of ABTe2 compounds versus
photon energy for different polarizations of the incident radiations at CP-PBE0
level of calculations.

Fig. 5. The imaginary part ε2ðωÞ of the dielectric function of ABTe2 compounds
versus photon energy for different polarizations of the incident radiations at CP-
PBE0 level of calculations.

Fig. 6. Scissor correction effect on the ε2ðωÞ spectra of KYTe2 compound versus
photon energy at CP-PBE0, HSE06 and GGA-PBE levels of calculations.
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transitions that involving the scattering of phonons that are expected to
produce a slight contribution to εðωÞ. It is worthy to identify the origin of
the direct interband iðkÞ → i’ðkÞ electronic transitions between the
occupied states in the VB and the unoccupied ones in the CB that are
responsible for the main peaks of the ε2ðωÞ spectra of the studied com-
pounds with the help of their band gap diagrams. Our analysis of the
ε2ðωÞ spectra show two main peaks (optical critical points of the
dielectric function) occur at 4 and 6 eV for all compounds, which are due
to optical transitions from valence bands to conduction bands. These
points are Γv–Γc, which give the threshold for the direct transitions be-
tween the valence and the conduction bands for the investigated com-
pounds. Our outcomes are compared with the computed DOS and band
structure to locate the source of these characteristics in the Brillouin
zone. Hence, Fig. 6 shows the two critical points in linear optical tran-
sitions for KYTe2. Indeed, the first critical point (4 eV) is mainly due to
transitions between d-Y þ p-Te valence bands to s/d-Y þ s-Te conduction
bands. The second critical point (6 eV) is due to d-Yþ p-Te valence bands
to p-K þ p-Y þ s-Te conduction bands. In light energy conversion, the
absorption via ε2ðωÞ should be in the visible spectrum.We note here, that
the band gaps are overestimate by PBE0 and the CP-PBE0 spectra are
shifted by around 0.8 eV/100 nm and around 1.4 eV/200 nm to UV re-
gion compared to HSE06 and GGA-PBE respectively. For correct the
absorption spectra we used the scissor operator correction [57], their
values were considered as 0.8 and 1.4 eV for HSE06 and GGA-PBE
respectively see Fig. 6. LiYTe2 and NaYTe2 have smallest band gap
values (Table 2), as consequently they show again their largest absorp-
tion in the visible spectrum predicting a better efficiency in photovoltaic
applications.

The CP-PBE0 reflectivity spectrum RðωÞ is shown in Fig. 7 for ABTe2.
The reflectivity does not approach the unity when the photon frequency
6

tends towards zero, meaning that these materials behave like semi-
conductors and the ABTe2 materials are transmitting for frequencies less
than 2eV. Also, it is obvious from the Figure that the reflectivity increases
with the increasing of incident photon energy (above 2:5eV). The
computed RðωÞ rises from interband transitions approximately by about
35% compared to its static R(0) reflectivity along 100 and 001 directions
at about 3.5 and 6 eV, respectively. Moreover, the RðωÞ is decreasing
until 5% at energy larger than 17 eV for the series of materials. In the



Fig. 7. The reflectivity RðωÞ spectra of ABTe2 compounds versus photon energy
at CP-PBE0 level of calculations.
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scientific literature R values for materials commonly used in the light
conversion process are about or less than 40% in the visible energy range
[58,59]. In Si, InP and GaP nanowire materials used for photovoltaic
applications, we found their reflectivity values are between 30% �40%
[60]. In addition, to ensure low reflectance amount in materials and by
consequence high photon to electron conversion efficiencies, researchers
made antireflection films to increase the absorption ratio [61–63].

4. Conclusions

In summary, the ability of ABTe2 compounds to be good candidates
for light energy conversion has been theoretically studied at the DFT
level of calculation using the PBE0 exchange-correlation energy func-
tional. The cell parameters are in agreement with the experimental and
available theoretical results. The dielectric constant and exciton binding
energy are investigated for the first time for these materials. The elec-
tronic and optical properties of ABTe2 compounds have been also per-
formed. The studied compounds have an indirect energy band gap, and
the analysis of the total density of states shows that all bands gap energies
are described by [Bþ3-Te�2] electronic transitions. Important funda-
mental properties such as band gap, effective mass, dielectric constant,
and exciton binding energy have been calculated and present the effi-
ciency of these compounds in light energy conversion. It can be
concluded that among all the considered ternary compounds, the
fundamental static properties for NaYTe2, LiYTe2 and RbYTe2 are more
attractive for applications of solar light energy conversion. Linear optical
spectra of ABTe2 were discussed and present an anisotropic character.
When the atomic number of the alkali metal increases the peak width
decreases and their position is shifted towards higher energy. Apart from
the cell parameters and some electronic properties of the studied mate-
rials, no data on these materials was found in the literature for compar-
ison, therefore further theoretical and experimental studies are suggested
to exploit the real potential of these materials for practical applications.
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