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Micelle Catalyzed Oxidative Degradation
of Paracetamol by Water Soluble Colloidal
MnO2 in Acidic Medium

The catalytic effect of cationic micelles of cetyltrimethylammo-
nium bromide (CTAB) on the MnO2-paracetamol (PCM) redox
reaction has been examined spectrophotometrically in acidic
medium at 298 K. The reaction demonstrates that the stoichio-
metric ratio of MnO2 and PCM is 1 :1. The reaction exhibited first
order kinetics with respect to [MnO2] and [PCM] but a negative
fractional order was observed with respect to [H2SO4]. Various
effects such as ionic strength, dielectric constant, [Mn(II)], [salts]
and temperature have been studied. The catalytic effect of CTAB
has been treated quantitatively by the well known Menger Port-
noy and Piszkiewicz model. The values of binding constant (Ks),
rate constant in the micellar phase (km), cooperativity index (n)
and dissociation constant (KD) have also been calculated. From
the several observations, a reaction mechanism has been pro-
posed and the rate law has been derived. Applying the Arrhe-
nius equation, various thermodynamic activation parameters
have also been evaluated.

Key words: Reaction kinetics, Oxidative degradation, Colloidal
MnO2, Paracetamol (PCM), Cetyltrimethylammonium bromide
(CTAB)

Mizellare Katalyse des oxidativen Abbaus von Paracetamol
mittels wasserlöslichen kolloidalen MnO2 im sauren Medi-
um. Der katalytische Einfluss von Mizellen des kationischen Ce-
tyltrimethylammoniumbromids (CTAB) auf die MnO2-Paraceta-
mol-Redoxreaction wurde spektrophotometrisch im sauren
Medium bei 298 K untersucht. Das stöchiometrische Verhältnis
von MnO2 und Paracetamol(PCM) beträgt bei dieser Reaktion
1 :1. Die Reaktionskinetik ist Erster Ordnung hinsichtlich der
MnO2

– und der PCM-Konzentration, sie ist jedoch hinsichtlich
der H2SO4-Konzentration von negativer gebrochener Ordnung.
Es wurden verschiedene Einflüsse wie die Ionenstärke, die
dielektrische Konstante, die Mn(II)-Konzentration, die Salzkon-
zentration und die Temperatur untersucht. Der katalytische Ein-
fluss von CTAB wurde quantitativ mit dem gut bekannten Modell
von Menger Portnoy und Piszkiewicz bestimmt. Die Bindungs-
konstante (Ks), die Geschwindigkeitskonstante in der mizellaren
Phase (km), der Kooperativitätsindex (n) und die Dissoziations-
konstante (KD) wurden ebenfalls bestimmt. Mit Hilfe der ver-
schiedenen Beobachtungen wird ein Reaktionsmechanismus
vorgeschlagen und das Geschwindigkeitsgesetz der Reaktion ab-
geleitet. Durch Anwendung der Arrhenius Gleichung konnten
verschiedene thermodynamische Aktivierungsparameter eben-
falls berechnet werden.

Stichwörter: Reaktionskinetik, oxidativer Abbau, kolloidales
MnO2, Paracetamol (PCM), Cetyltrimethylammoniumbromid
(CTAB)

1 Introduction

Surfactant molecules cover small water droplets and are
changed into uniformly distributed assemblies of micelles
once reaching a critical micellar concentration in an organic
bulk solvent [1]. The reaction of a reactive counter ion is gen-
erally catalyzed by ionic micelles with hydrophobic sub-
strates which bind to the micelles [2, 3]. Micelle catalyzed re-
actions which are considered as models for electrostatic and
hydrophobic interaction in biological systems will provide
information regarding the mechanism of regulation of reac-
tions as micelles are structurally simpler and can easily be
modified compared to complex biological interfaces [4]. In-
vestigations of the reaction mechanisms in organized mole-
cular assemblies are being applied more and more due to
the fact that a lot of biological processes proceed in a very
small heterogeneous system that contains an aqueous and
a lipophilic moiety [5]. By the addition of salt or surfactant,
a transition of sphere-shaped to larger micelles will occur [6,
7]. The importance of surfactants in environmental impurity
control and treatment has long been recognized. In order to
change the mobility of contaminants in the aquifer or their
availability to bacteria, surfactant enhanced aquifer remedia-
tion (SEAR), based on micelle solubilization and interfacial
tension (IFT) reduction has been used as a popular technol-
ogy [8–10]. A lot of works have been carried out on the ki-
netic degradation of organic compounds by several oxidants
in the presence of a micellar system [11–20].
The transparent solutions of manganese dioxide also pos-

sess a prominent status due to their wide ranging participa-
tion as intermediates [21] as they play a vital role in autocata-
lytic and oscillating reactions [22, 23]. The colloidal MnO2

particles can be stabilized in aqueous solutions by attaining
a negative electrostatic charge, for e.g., by adsorption of phos-
phate ions, despite the fact that the stabilizing effect of phos-
phate is not permanent [24, 25]. Manganese oxides/hydro-
xides are one of the significant oxides in soils, waters and
sediments. One study demonstrated that the levels of manga-
nese oxides in sediments are as high as 205 mol/kg [26]. They
are usually more geochemically active due to their high nega-
tive surface charge, low point of zero charge, large surface
area, and low crystalline and dynamic redox behaviour [27].
Many studies revealed that manganese oxides/hydroxides are
capable of degrading various organic pollutants [28–33].
The drug N-acetyl-4-aminophenol usually known as para-

cetamol (PCM), is an enormously utilized analgesic, anti-
pyretic and anti-inflammatory agent all over the world [34,
35]. It is extensively applied for pain relief, cold, fever and
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non-inflammatory musculoskeletal conditions [36]. Some
major sources of water pollution by the PCM is through ex-
cretion, from the manufacturing site, direct disposal of ex-
pired drugs in households and hospitals, defecated after
drug administration to humans and treatments throughout
the water in fish farms [37]. A lot of techniques/methods
have been reported for the removal or transformation of
PCM from marine water like advanced oxidation process:
ozonisation [38–41], photo degradation [42–45], photo-Fen-
ton process [46–50] oxidative degradation [51–55], etc. In
the present work, we report a new method of oxidative de-
gradation of PCM by colloidal MnO2 in the presence of a cat-
ionic surfactant (CTAB).

2 Experimental

2.1 Reagents

Potassium permanganate (E. Merck, Mumbai, India), sul-
phuric acid (E. Merck, Mumbai, India), paracetamol (S. D.
Fine, India), potassium nitrate (E. Merck, Mumbai, India),
acetonitrile (E. Merck, Mumbai, India), manganese(II) chlor-
ide (E. Merck, Mumbai, India), sodium thiosulphate (E.
Merck, Mumbai, India), cetyltrimethylammonium bromide
((S. D. Fine, India), potassium chloride (CDH, India), potas-
sium bromide (E. Merck, Mumbai, India) and sodium disul-
phate (E. Merck, Mumbai, India) were used for the present
study. All solutions of these chemicals were prepared in tri-
ply distilled water for the present work.

2.2 Preparation and characterization of colloidal MnO2

Water soluble colloidal MnO2 was synthesized using the
method adopted by Perez Benito et al. [56–58]. Required
quantities of the standard solution of KMnO4 (1.0 ·
10–2 mol dm–3) and of Na2S2O3 (1.0 · 10–2 mol dm–3) were
mixed together and after addition of water, a new brown co-
lure solution was developed. The obtained solution of colloi-
dal MnO2 was thoroughly transparent, which was stored in
amber bottle for prohibiting the photochemical reaction so
that it can remain for several months. Through the scanning
graph of MnO2, the synthesis of colloidal MnO2 was con-
firmed by Varian Cary 50 Bio UV-Visible spectrophotometer
which showed an absorption spectra at kmax = 375 nm
(Fig. 1). The synthesis of colloidal MnO2 was further con-
firmed by the addition of various inorganic salts to the col-
loidal solution of MnO2 which makes a precipitation of
Mn(IV) [33, 59].

2.3 Stoichiometry and product analysis

Various reaction mixtures with [MnO2] >> [PCM] were pre-
pared in black coated bottles and kept towards 72 h at room

temperature. The stoichiometry of the reaction exhibited
that one mole of PCM is oxidized by one mole of MnO2, as
shown in equation (1):

ð1Þ

The completion of the reaction was confirmed by observing
the absorbance value. The products were extracted with
ether. Benzoquinone was identified as the main oxidation
product of PCM [60], along with ammonia which has also
been confirmed by the spot test [61–62].

2.4 Test for free radicals

During the course of the reaction, the production of free ra-
dicals could be confirmed by using monomeric acrylonitrile.
In the reaction mixture containing MnO2, PCM, H2SO4 and
CTAB, an appropriate quantity of acrylonitrile was added.
The development of a precipitation indicated that free radi-
cals were generated during the reaction.

3 Result and Discussion

3.1 Kinetic measurements

All the kinetic measurements were carried out by taking an
appropriate quantity of aqueous solutions of PCM, H2SO4

and CTAB in the beaker at 298 K. The reaction started with
the addition of the colloidal MnO2 solution containing reac-
tion mixture. During the progress of the reaction, the absor-
bance of the disappearing colloidal MnO2 was recorded
spectrophotometrically at fixed wavelength of 375 nm and
known various time intervals. The spectral changes obtained
in the presence of the cationic surfactant (CTAB) are de-
picted in Fig. 2. The pseudo first order rate constant was ap-
praised by plotting log (absorbance) versus time (Fig. 3).

3.2 Effect of [MnO2] on the rate of reaction

The oxidation of PCM by water soluble colloidal MnO2 was
carried out as a function of [MnO2] at fixed [PCM] (1.2 ·
10–3 mol dm–3), [H2SO4] (1.0 · 10–4 mol dm–3) and [CTAB]
(10.0 · 10–4 mol dm–3) at 298 K. The rate of reaction was
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Figure 1 Absorption spectrum of water soluble colloidal MnO2
(0.6 · 10–4 mol dm–3) which is the reaction product of the KMnO4
(1.0 · 10–2 mol dm–3) and Na2S2O3 (1.0 · 10–2 mol dm–3) solution

Figure 2 UV-visible spectral changes during the oxidation of paracetamol by
colloidal MnO2 in the presence of the cationic surfactant (CTAB) in acidic
medium at 298 K; conditions: [PCM] = 1.2 · 10–5 mol dm–3,
[MnO2] = 0.6 · 10–4 mol dm–3, [H2SO4] = 1.0 · 10–4 mol dm–3 and
[CTAB] = 10.0 · 10–4 mol dm–3; time scanning interval: 3 min
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found to be decreased with increasing [MnO2] (Fig. 3 and
Table S1 in the supporting documents), which may be due
to the flocculation of the colloidal particles of MnO2 [33,
63–65].

3.3 Effect of [PCM] on the rate of reaction

In order to find out the reaction order as a function of
[PCM], the kobs value was determined with variable concen-
trations of PCM (0.6 · 10–3 to 2.4 · 10–3 mol dm–3) keeping
the concentrations of MnO2, H2SO4 and CTAB constant at
298 K. The first order reaction was obtained with respect to
[PCM] and it was confirmed by the linearity obtained from
the plot of log kobs vs. log [PCM] with a slope of 0.995
(R2 = 0.973) (Fig. 4, Table S1).

3.4 Effect of [H2SO4] on the rate of reaction

Table S1 (see Appendix) contains the relevant data related to
the reaction performed as a function of [H2SO4] in the con-
centration rage from 0.2 · 10–4 to 2.0 · 10–4 mol dm–3. The
decrease in the reaction rate has been observed with increas-
ing the H2SO4 concentration. A negative fractional order
was obtained by plotting log kobs vs. log [H2SO4]. The slope
is equal to –0.452 (R2 = 0.938) (Fig. 5).

3.5 Effect of ionic strength on the rate of reaction

The effect of ionic strength (I) was determined according to
the theory of Bronsted and Bjerrum [46, 47, 66], where the
effect of ionic strength on the rate can be expressed as:

log k1 ¼ log k0 þ 1:02ZAZBI
1=2 ð2Þ

where ZA and ZB indicate the valence of the ions A and B, I
is ionic strength and k1 and k0 refer as the rate constants in
the presence and absence of the added electrolyte respec-
tively. A linear slope of 1.02 ZAZB will be obtained from a
plot of log k1 vs. I

1/2. If ZA and ZB ions have similar signs,
ZAZB will exhibit a positive slope as the rate increases pro-
portionally with the ionic strength. On the other hand, if
these ions have dissimilar signs, a negative slope would
have been obtained. With the varying concentrations of
[KNO3] (3.0 · 10–3 to 9.0 · 10–3 mol dm–3), no change in rate
constant was noticeable which indicated that a neutral mole-
cule is involved in rate determining step.

3.6 Effect of dielectric constant on the rate of reaction

In order to find out the effect of dielectric constant of the
medium on the reaction rate in the reaction mixture, the ex-
periments were performed in micellar media with varying
the concentration of acetonitrile from 5% to 25%. It can be
shown by well the known eq. (3)

log k1 ¼ log k00 ¼
ZAZBe

2N

2:303 ð4pe0ÞdABRT
�

1

D
ð3Þ

where ZA and ZB are the charges of reacting ions, dAB is
known as size of activated complex, k0’ refers the rate con-
stant in a medium of infinite dielectric constant, D is dielec-
tric constant and T is absolute temperature. It was clearly
seen that the kobs value decreased with decreasing dielectric
constant of the medium (Table S2). The obtained plot log k1
vs. 1/D is based on eq. 3 (Fig. 6); a line with a negative slope
was obtained indicating that an interaction between negative
ions and dipole molecules or between two dipoles is possible
[14, 46, 47].

3.7 Effect of [Mn(II)] on the rate of reaction

With increasing [Mn(II)] and keeping all the concentrations
of reactants constant at fixed temperature, the observed
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Figure 3 First order plots for the oxidation of paracetamol by colloidal MnO2
in the presence of CTAB at 298 K; conditions: [PCM] = 1.2 · 10–3 mol dm–3,
[H2SO4] = 1.0 · 10–4 mol dm–3, [CTAB] = 10.0 · 10–4 mol dm–3 and
[MnO2] = (1) 0.4 · 10–4, (2) 0.6 · 10–4, (3) 0.9 · 10–4, (4) 1.2 · 10–4,
(5) 1.5 · 10–4 and (6) 1.8 · 10–4 mol dm–3

Figure 4 Effect of [PCM] on kobs for the oxidation of paracetamol by colloidal
MnO2 in the presence of CTAB at 298 K. (Conditions: [MnO2] =
1.2 · 10–4 mol dm–3, [H2SO4] = 1.0 · 10–4 mol dm–3, [CTAB] =
10.0 · 10–4 mol dm–3, [PCM] = (1) 0.6 · 10–3, (2) 0.9 · 10–3, (3) 1.2 · 10–3,
(4) 1.5 · 10–3, (5) 1.8 · 10–3, (6) 2.1 · 10–3 and (7) 2.4 · 10–3 mol dm–3)

Figure 5 Effect of [H2SO4] on kobs for the oxidation of paracetamol by
colloidal MnO2 in the presence of CTAB at 298 K. (Conditions:
[MnO2] = 1.2 · 10–4 mol dm–3, [PCM] = 1.2 · 10–3 mol dm–3,
[CTAB] = 10.0 · 10–4 mol dm–3 and [H2SO4] = (1) 0.2 · 10–4,
(2) 0.5 · 10–4, (3) 1.0 · 10–4, (4) 1.5 · 10–4, (5) 1.75 · 10–4 and
(6) 2.0 · 10–4 mol dm–3)
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reaction rate was almost constant (Table 1) indicating
that Mn(II) ions were not involved before the rate limiting
step.

3.8 Effect of [salt] on the rate of reaction

At fixed [PCM], [MnO2] and [H2SO4] in the presence of the
micellar system CTAB, the effect of added salts like KCl,
KBr and Na2SO4 did not significantly influence the reaction
rate (Table 1).

3.9 Reaction mechanism and rate law

Considering Scheme 1 and eq. (6) the rate law may be de-
rived as follows:

rate ¼ k½C1� ð10Þ

where C1 is complex of (DnS-MnO2).
From eq. (4), we have

½DnS� ¼ K1½Dn�½S� ð11Þ

where S represents paracetamol [PCM].
From eq. (5), we get

K2 ¼
½C1�½H

þ�

½DnS�½MnO2�
ð12Þ

Applying a steady state approximation method for the com-
plex C1, we have the following equations

d½C1�

dt
¼ 0 ¼ k2½DnS�½MnO2� � k�2½C1�½H

þ� � k½C1� ð13Þ

½C1� ¼
k2½DnS�½MnO2�

kþ k�2½Hþ�
ð14Þ

Inserting the value of [DnS] from eq. (11) in eq. (14)

½C1� ¼
K1 k2½Dn�½S�½MnO2�

kþ k�2½Hþ�
ð15Þ

Inserting the value of [C1] from eq. (15) in eq. (10), we get
eq. (16):

rate ¼
k k2K1½Dn�½S�½MnO2�

kþ k�2½Hþ�
ð16Þ

Eq. (16) is the final rate law based on the observed kinetic
orders with respect to each reactant which involved in the
reaction.

By reversing eq. (16), eq. (17) can be written as

½MnO2�

rate
¼

½Hþ�

k k2 K1½Dn�½S�
þ

1

k2 K1½Dn�½S�
ð17Þ

Eq. (17) indicates that if a plot is made between 1/kobs and 1/
[PCM], a straight line will be obtained which passes through
the origin and if a plot is made between 1/kobs and [H+], a
straight line will be obtained with positive intercept on y-axis
(Fig. 7 and 8). The proposed scheme supports the rate law
represented in eq. (16).

In the reaction mechanism displayed in Scheme 1, reac-
tions between surfactant CTAB i. e. Dn and substrate (S)
i. e. PCM to form (DnS) is shown (eq. (4)). The species DnS
again reacts with MnO2 giving rise to H+ and C1 anionic
complex in the initial equilibrium step but break down in
the subsequent rates producing step produce C2 complex
(free radical), HMnO2 along with hydroxide ion (eq.6). This
C2 radical complex further combines with HMnO2 giving
rise to C3 complex and H2MnO2. Consequently, H2MnO2 re-
acts with a hydroxide ion giving rise to Mn(II) and further
the C3 complex hydrolyzed giving rise to the final products
(benzoquinone and ammonia) (eq. 8).

3.10 Effect of temperature on the rate of reaction

In order to evaluate the value of thermodynamic activation
parameters, the reaction rate was performed at five various
temperatures, viz., 293, 298, 303, 308 and 313 K at constant
concentration of PCM, MnO2, H2SO4 and CTAB. The rate
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Figure 6 Effect of dielectric constant on kobs for the oxidation of paracetamol
by colloidal MnO2 in the presence of CTAB at 298 K. (Conditions:
[MnO2] = 1.2 · 10–4 mol dm–3, [PCM] = 1.2 · 10–3 mol dm–3,
[H2SO4] = 1.0 · 10–4 and [CTAB] = 10.0 · 10–4 mol dm–3)

Scheme 1 Reaction mechanism in the presence of CTAB
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constant was found to be increased with increasing tempera-
ture (Fig. 9, Table S3). Linear plot was observed in log kobs
vs. 1/T. The Arrhenius equation was applied for calculating
the activation energy and other thermodynamic activation
parameters (Table 2).

4 Determination of CMC

The critical micelle concentration (CMC) is one of the most
practical quantities for characterizing surfactant. This pa-
rameter captures most of the surface activity of the mole-
cule. The conductometrically measurement of the CMC val-
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[KCl]/103 mol dm–3 [KBr]/103 mol dm–3 [Na2SO4]/10
3 mol dm–3 [MnCl2]/10

5 mol dm–3 CTAB/kobs10
4 s–1

0.0 2.71

0.2 2.69

0.4 2.71

0.6 2.70

0.8 2.71

1.0 2.71

0.0 2.71

0.2 2.70

0.4 2.72

0.6 2.71

0.8 2.71

1.0 2.70

0.0 2.71

0.2 2.71

0.4 2.69

0.6 2.68

0.8 2.69

1.0 2.70

0.0 2.71

1.0 2.70

2.0 2.71

3.0 2.69

4.0 2.70

40.0 2.71

Table 1 Effect of [KCl], [KBr], [Na2SO4] and [MnCl2] for the oxidation of paracetamol in the presence of CTAB at 298 K, experimental conditions
[PCM] = 1.2 · 10–3 mol dm–3, [MnO2] = 1.2 · 10–4 mol dm–3, [H2SO4] = 1.0 · 10–4 mol dm–3 and [CTAB] = 10.0 · 10–4 mol dm–3

Figure 7 Verification of rate law for 1/[PCM] of oxidation of paracetamol
by colloidal MnO2 in the presence of CTAB at 298 K. (Conditions:
[MnO2] = 1.2 · 10–4 mol dm–3 and [H2SO4] = 1.0 · 10–4 mol dm–3)

Figure 8 Verification of rate law for [H+] of oxidation of paracetamol by
colloidal MnO2 in the presence of CTAB at 298 K. (Conditions: [H+] =
1.0 · 10–4 mol dm–3 and [MnO2] = 1.2 · 10–4 mol dm–3)
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ue of CTAB was determined at 298 K using a Systronic digi-
tal conductivity meter 304. In the absence and presence of
the reactants PCM and MnO2, the CMC value of surfactant
was calculated from the breaking point of the two straight
line of the plot of specific conductivity versus [surfactant]
(Table S4).

5 Influence of CTAB

An uncommon medium provided by micelles may affect the
reaction rate. Due to the electrical charge on their head
groups micelles can either attract or repel the reactive ions
[15]. The effect of CTAB was investigated on the rate of reac-
tion by performing the reaction on varying the amount of
CTAB at fixed concentration of other reactants at 298 K.
The value of kobs increases from 1.94 · 10–4 to 7.30 · 10–4 s–1

with increasing [CTAB] while keeping the concentration of
the other reactants constant at 298 K (Table 3).

6 Menger and Portnoy model

The rate of micellar catalysis in the presence of CTAB has
been explained by the pseudo phase model proposed by
Menger and Portnoy. The variation of the reaction rate with
surfactant is usually carried out on the assumption that the
substrate is distributed between the aqueous and micellar
phases as exhibited in Scheme 2.
The rate law according to Scheme 2 is:

kobs ¼
kw þ kmKs½Dn�

1þ Ks½Dn�
ð18Þ

In the case of micellar catalysis this model leads to the fol-
lowing relationship:

1

ðkw � kobsÞ
¼

1

ðkw � kmÞ
þ

1

ðkw � kmÞKs½Dn�
ð19Þ

where [Dn] is the surfactant in the micellar phase (i. e.,
[Dn] = [CTAB]-CMC), kw represents the rate constant in the
absence of surfactant, the rate constant in the micellar phase
(km) and KS and KF are the binding constant. Linearity
should be obtained by the plots of 1/kw-kobs versus 1/[Dn]
(Fig. 10), which shows the applicability of the model. Under
the experimental conditions, the value of km and KS were
calculated using the slope and intercept. The value of km
and KS of PCM in CTAB were found to be 50.69 · 10–4 and
20.20 respectively.

7 Piszkiewicz model

Several analogies have been proposed to describe the micel-
lar phase reaction. Reactions influenced by surfactants have
been viewed as models of enzyme catalyzed reactions. A
kinetic model analogous to the Hill model was used by
Piszkiewicz to explain the catalysis of molecular reactions
by surfactants. This model is applicable especially at lower
surfactant concentrations and the data may be treated with-
out reference to CMC. According to this model a substrate
(S) and a number n of detergent molecules (D), combined
to form an active micelle (DnS) that may react to produce
product as shown in Scheme 3.
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Figure 9 Effect of temperature on the pseudo-first-order rate constant
for the oxidation of paracetamol by colloidal MnO2 (Conditions:
[MnO2] = 1.2 · 10–4 mol dm–3, [PCM] = 1.2 · 10–3 mol dm–3,
[H2SO4] = 1.0 · 10–4 mol dm–3, [CTAB] = 10.0 · 10–4 mol dm–3 and
temperature = 293 K, 298 K, 303 K, 308 K, 313 K and 318 K)

Parameter CTABkobs/10
4 s–1

Ea/kJ mol–1 75.40

DH#/kJ mol–1 72.92

DS# /J K–1 mol1 –60.20

DG#/kJ mol–1 90.86

logPzc 9.65

Table 2 Thermodynamic activation parameters in the presence of CTAB

Scheme 2 Menger and Portnoy model

104 [CTAB]/mol dm–3 kobs/10
4 s–1

0.0 1.94

2.0 2.29

4.0 2.36

6.0 2.45

8.0 2.52

10.0 2.71

12.0 2.81

14.0 3.06

16.0 3.25

18.0 3.70

20.0 3.84

22.0 4.34

25.0 6.28

30.0 7.30

Table 3 Effect of [CTAB] on the oxidation of paracetamol by colloidal MnO2
at 298 K; experimental conditions: [PCM] = 1.2 · 10–3 mol dm–3,
[MnO2] = 1.2 · 10–4 mol dm–3, [H2SO4] = 1.0 · 10–4 mol dm–3 and
[CTAB] = 10.0 · 10–4 mol dm–3
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Where KD is the dissociation constant of micelle back to
its free components, n and D represent the index of coopera-
tivity and total surfactant respectively.

As per this model, the observed rate constant is shown as
a function of detergent given by following equation.

kobs ¼
km½D�

n þ kwKD

KD � ½D�n
ð20Þ

After rearrangement of eq. (20), we have

log ¼
kobs � kw
km � kobs

¼ n log½D� � logKD ð21Þ

From the linear plot obtained between log {(kobs–kw)/(km–
kobs)} and log [D], the values of n and KD were found to be
1.32 and 1.11 respectively from the slope and intercept of
the plot for CTAB (Fig. 11). Our observations for the value
of n (between 1 to 3) are in good agreement with the earlier

observations of Piszkiewicz [73] and is viewed as indices of a
positive cooperativity that induced interaction of the addi-
tional substrate molecule due to the interaction of micelle
with the first substrate molecule. These values are far less
than the number of surfactant molecules found in the mi-
celle and have previously been interpreted as indicative of
the pre-micellar aggregates [74].

8 Probable reaction site

Owing to the diverse properties of the micellar pseudo-
phase, the exact site of the reaction is not possible to locate
precisely, but to some extent, location of reactants can be
reasoned. The results demonstrated that the catalytic effect
of CTAB on the reaction rate increased not only in post-mi-
cellar catalysis but also in pre-micellar catalysis. The cataly-
sis of the reaction in CTAB surfactant solution is mainly be-
cause of the association/incorporation of the substrate into
the micelle. One of the three factors like electrostatic/hydro-
phobic and hydrogen bonding interactions between the
PCM and MnO2 might have been responsible for the en-
hanced reaction rate. The probable reaction site occurs in
the palisade-Stern layer’s junctural region of micelles, which
is clearly seen in the Scheme 4.

9 Comparative study

It is interesting to discuss the reactivity of PCM oxidized by
MnO2 as compared to an other oxidant Cr(VI) [59]. In the
present investigation, a fractional order kinetics was ob-
served with respect to [H+] where as a first order kinetics
with respect to [H+] was observed in the presence of Cr(VI).
Reaction was proceeded in the presence of the anionic sur-
factant SDS in case of Cr(VI) and in the present study, it
was found that cationic surfactant CTAB also enhanced the
reaction rate. The catalytic effect was explained by various
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Figure 10 Plot of 1/(kw – kobs) versus 1/[Dn] for the oxidation of paracetamol
by colloidal MnO2 at 298 K

Scheme 3 Piszkiewicz Model

Figure 11 Piszkewicz model for CTAB mediated reaction. (conditions:
[PCM] = 1.2 · 10–3 mol dm–3, [MnO2] = 1.2 · 10–4 mol dm–3 and
[H2SO4] = 1.0 · 10–4 mol dm–3 at 298 K)

Scheme 4 Schematic representation of the probable reaction site for the
oxidation of paracetamol by colloidal MnO2 in the presence of CTAB micelles

Parameter

km 5.07 · 103

Ks 20.20

n 1.324

KD 1.114

Table 4 Other parameters for the oxidation of paracetamol by colloidal
MnO2 at 298 K in the presence of CTAB
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models. Mn(II) was not affected on the rate of reaction in
the present work but it showed a catalytic effect in the pre-
sence of Cr(VI) [59].

10 Conclusion

The main aim of the present investigation is to study the ef-
fect of a cationic micelle (CTAB) on the oxidation of the an-
algesic drug PCM by colloidal MnO2. The catalytic role of
CTAB, owing to the incorporation/association of colloidal
MnO2 and PCM into the micelle, has been discussed by the
models of Menger Portnoy and Piszkiewicz. All the experi-
mental evidences, the rate law and various parameters are
evaluated. Under the experimental conditions, the degraded
product of PCM was identified as benzoquinone.
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[MnO2]/
104 mol dm–3

[PCM]103/
mol dm–3

[H2SO4]/
104/mol dm–3

CTAB kobs/
104 s–1

0.4 1.2 1.0 23.30

0.6 1.2 1.0 10.36

0.9 1.2 1.0 4.14

1.2 1.2 1.0 2.71

1.5 1.2 1.0 1.15

1.8 1.2 1.0 1.11

1.2 0.6 1.0 1.64

1.2 0.9 1.0 2.15

1.2 1.2 1.0 2.71

1.2 1.5 1.0 3.31

1.2 1.8 1.0 4.43

1.2 2.1 1.0 5.49

1.2 2.4 1.0 6.35

1.2 1.2 0.2 4.80

1.2 1.2 0.5 3.10

1.2 1.2 1.0 2.71

1.2 1.2 1.5 2.20

1.2 1.2 1.75 1.80

1.2 1.2 2.0 1.50

Table S1 Effect of [MnO2], [PCM] and [H2SO4] for the oxidation of paraceta-
mol by colloidal MnO2 in the presence of CTAB at 298 K; experimental con-
ditions: [PCM] = 1.2 · 10–3 mol dm–3, [MnO2] = 1.2 · 10–4 mol dm–3,
[H2SO4] = 1.0 · 10–4 mol dm–3 and [CTAB] = 10.0 · 10–4 mol dm–3

APPENDIX

[CH3CN]/% (v/v) D CTAB kobs/10
4 s–1

0.0 78.2 2.71

5.0 76.16 2.04

10.0 74.13 1.72

15.0 72.10 1.38

20.0 70.06 0.85

25.0 68.02 0.57

Table S2 Effect of dielectric constant for the oxidation of paracetamol by
colloidal MnO2 in presence of CTAB at 298 K; experimental conditions:
[PCM] = 1.2 · 10–3 mol dm–3, [MnO2] = 1.2 · 10–4 mol dm–3,
[H2SO4] = 1.0 · 10–4 mol dm–3 and [CTAB] = 10.0 · 10–4 mol dm–3

T/K CTAB kobs/10
4 s–1

293 1.81

298 2.71

303 5.22

308 8.55

313 12.05

Table S3 Effect of temperature for the oxidation of paracetamol by colloidal
MnO2 in the presence of CTAB at 298 K; experimental conditions:
[PCM] = 1.2 · 10–3 mol dm–3, [MnO2] = 1.2 · 10–4 mol dm–3,
[H2SO4] = 1.0 · 10–4 mol dm–3 and [CTAB] = 10.0 · 10–4 mol dm–3

Solution CMC(CTAB)/10
–4 mol dm–3

Water 10.1

Water + MnO2 6.4

Water + PCM 5.0

Water + H2SO4 2.6

Water + PCM + MnO2 + H2SO4 3.1

Table S4 CMC values of CTAB in different solutions at T = 298 K (con-
ductivity measurements); literature value of CTAB in water at T = 298 K:
10.0 · 10–4 mol dm–3 [15]
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